从20世纪九十年代提出到现在的系统级封装,简称(SiP),历经几十年的不断发展,已广泛被医学界和学术界所接受,目前已成为电子技术研究新热点和技术应用的主要方向之一,并认为它代表了今后电子技术发展的方向,这些年来SiP封装技术在不断的创新中得到了长足发展,逐渐形成了自己的技术体系,值得从事相关技术行业的技术人员和学者进行研究和学习。
SiP定义
SiP(System in Package )系统级封装,通过使用3D-MCM立体组装技术,将多个芯片和可能的无源元件集成在同一封装内,形成具有一个电子系统的整体或主要部分功能的模块,具备较高的性能密度、集成度、以及更小的成本和更大的灵活性,从产品的性能、体积和重量等指标的成为i最佳组合,是一项综合性的微电子技术。
随着产品效能的提升,外形轻薄和低耗的需求带动下,迈向封装整合的全新阶段。在此发展方向的引导下,逐渐形成了电子产业上相关的两大新主流:系统单芯片SoC(System on Chip)与系统化封装SiP。从目前的封装发展的角度来看,SiP是SoC封装实现的基础。集成电路器件的封装,从单个组件(如IC)的开发,进入到多个组件的集结(如多个IC组合成系统)。
SoC与SiP是极为相似,两者均希望将一个包含逻辑组件、内存组件,甚至包含被动组件的系统,整合在一个单位中。然而就发展的方向来说,两者却是大大的不同:SoC是在设计的角度出发,目的在将一个系统所需的组件,整合于一芯片上;而SiP则是由封装的立场发展,将不同功能的芯片整合于一电子构装中。
在未来电子产品在体积、处理速度或电性特性各方面的需求考量下,SoC确为未来电子产品设计的关键与发展方向。但SoC发展至今,除了面临诸如技术瓶颈高、CMOS、DRAM、GaAs、SiGe等不同制程整合不易、生产良率低等技术挑战尚待克服外,现阶段SoC生产成本高,以及其所需研发时间过长等因素,都造成SoC的发展面临瓶颈,也造就SiP的发展方向再次受到广泛地讨论与看好。
SiP封装并无一定型态,就芯片的排列方式而言,SiP可为多芯片模块(Multi-chip Module;MCM)的平面式2D封装,也可再利用3D封装的结构,以有效缩减封装面积;而其内部接合技术可以是单纯的打线接合(Wire Bonding),亦可使用覆晶接合(FlipChip),但也可二者混用。
不同的芯片排列方式,与不同的内部接合技术搭配,使SiP的封装型态产生多样化的组合,并可依照客户或产品的需求加以客制化或弹性生产。
SiP封装可将其它如被动组件,以及天线等系统所需的组件整合于单一构装中,使其更具完整的系统功能。由应用产品的观点来看,SiP更适用于低成本、小面积、高频高速,以及生产周期短的电子产品上,尤其如功率放大器(PA)、全球定位系统、蓝芽模块(Bluetooth)、影像感测模块、记忆卡等可携式产品市场。以长远的发展规划而言,SoC的发展将能有效改善未来电子产品的效能要求,而其所适用之封装型态,也将以能提供更好效能之覆晶技术为发展主轴;相较于SoC的发展,SiP则将更适用于成本敏感性高的通讯用及消费性产品市场